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ON E M B E D D I N G  OF GROUP RINGS 
IN DIVISION RINGS 

BY 

A. I. LICHTMAN 

ABSTRACT 

Let F be a free group, N <1 F and V(N) be a verbal subgroup of N. For the 
group ring R(F), where R is any field and F =  F/V(N), the zero divisor 
problem of Kaplansky and the problem of embedding R (F) in a division ring 
are investigated. It is proved, in particular, that R (F) has no zero divisors and 
can be embedded in a division ring when F/N is finitely approximated and 
N/V(N) is approximated by nilpotent groups without torsion. 

Introduction 

Let F be a free group, N a normal subgroup, and V ( N ) #  N a fully invariant 

subgroup of N. 

Let  us suppose that the factorgroup .N = N~ V (N)  is a group without torsion. 

It is known that in this case the factorgroup P -- F~ V (N)  is also a group without 

torsion (see, for example, [1]). 

We shall investigate in this paper the group ring R (F) of a group P over any 

field R and we shall get some sufficient conditions for R (F) to be embedded in a 

division ring. 

THEOREM 1. If  I~ = N / V  (N)  is a nilpotent group without torsion and G = 

F / N  has a subnormal series (possibly of transfinite length) 

(1) G . . .  c> Ha " -  t> /-/2 I> H1 t> E,  

where all factors H,+~ ~Ha are locally finite or locally solvable groups, then the 

group ring R (F) has no divisors of zero and has division ring of quotients. 

We shall say that a group G is a group of class A if as above G has a subnormal 

series (1) where all factors H~+I ~Ha are locally solvable or locally finite groups ; the 

series (1) we shall call an A-series. 
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The next theorem gives a sufficient condition for the embedding of R (F) in a 

division ring for a wider class of groups F, than that considered in Theorem 1. 

However,  in general, in this case R (F) has no full division ring of quotients, as 

can be seen from the example of ring R(F) ,  where F is a free group. 

THEOREM 2. Let F be a free group and N <~ F. If  F / N  is approximated by 

groups from the class A and V (N)  ~ N is a fully invariant subgroup of N,  such 

that IV = N~ V (N)  is approximated by nilpotent groups without torsion, then the 

group ring R (F) of the group if" = F~ V (N)  has no divisors of zero and can be 

embedded in a division ring. 

If G is any group, we will denote by FN (G)  the nth term of the lower central 

series. Thus, F~ ( G ) =  G, F2(G) is the commutator  subgroup [G, G] of G, and 

F, (G)  = [F,_~(G), G] .  By F ...... ..,,k(G) we will denote the term of an iterated 

polycentral lower central series, that corresponds to the sequence of natural 

numbers n~, n2, • • ", nk. 

We can get from Theorem 2 the next consequence (see Corollary 2). 

If G / N  is a finitely approximated group, then the group ring R (F) of the group 

P = F/F ...... ...nk (F) has no divisors of zero and can be embedded in a division 

ring. 

Smirnov has proved the absence of divisors of zero in the case when V (N) is 

the commutator  subgroup of N and G is an RN-group (See [12]). All other 

results on the zero divisor problem in group ring are contained in [10] and [8]. 

I am grateful to the reviewer for his helpful remarks. 

We shall state now a few lemmas that we will need for the proof of 

Theorem 1. 

First of all, we recall that a ring Q has a (right) ring of quotients if and only if it 

satisfies an Ore condition: for any two elements q~, q2 E Q, where q2 is regular, 

there exist elements r~, r2 E Q, such that 

(2) qzrl = q~r2. 

A ring without divisors of zero and with condition (2) will be called an Ore ring ; as 

is well-known, such a ring has a full division ring of quotients. 

The conclusions of the following lemma are well-known. 

LEMMA 1. Let G be any group and R (G)  its group ring over the field R. 

Then 
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(a) I f  R (G) is an Ore ring and G, is a subgroup of G, then R (G,) is an Ore 

ring too. 

(b) I f  for every finitely generated subgroup K C_ G the group ring R (K) is an 
Ore ring, then R ( G ) is an Ore ring too. 

(c) Let G ~> H and R (H) be an Ore ring. There exists a ring R ,  (G) of the 

quotients of R ( G ) over R ( H)  and R ( G ) is an Ore ring if and only if R ,  ( G ) is an 

Ore ring. 

(d) Let G t> H and R (H)  be an Ore ring. I f  G / H  is an infinite cyclic group 
then R ( G ) is an Ore ring too. 

PROOF. 

(a) Any element z E R (G)  can be written uniquely in the form z = 

E~Y1)qg, where , ~ R ( G 0 ,  i = l , 2 , . . . , n  and g ~ = l , g 2 - . . g ,  are some rep- 

resentatives of right cosets of G over G~. 

Let a and fl be any elements from R ( G 0 .  There exist x = Za, g, and 

y = Z/3~g~ in R (G)  such that 

(3) ax = / 3 y .  

The equation (3) gives us immediately: 

(3') aoq =/3/31, 

which means that the condition (2) holds in R(GO. The absence of divisors 

of zero in R (Gt) follows immediately. Hence, R (G~) is an Ore ring. 

(b) Follows immediately from condition (2). 

(c) Let D be the full ring of (right) quotients of R (H) .  Thus D is a division 

subring of R ,  (G)  and for any element ;t E D we have A = a/3-1, a,/3 E R (H) .  

The statement now follows easily from the existence of the representations, for 

every x @ R ,  (G) ,  

(4) x = ~ A,g, 
i = 1  

and 

(4') x = ~ g,A '~, 
i = 1  

where gl = 1, g2...,g, are some representatives of cosets G over H and 

L ,A ' iED,  i = 1,2, . . . ,  n. 

d) Let gH be the generator  of the factorgroup G/H.  Then from (4) we get 

that there exists a unique representation for every x E Rn (G)  
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(4") x = 2 ,Lg'. 
i k 

It is easy to see now that R ,  (G)  has no divisors of zero; moreover,  an algorithm 

of division can be determined in RH(G)  as in the case of the ring of 

noncommutative polynomials Q (t, S) and, as in the latter case, we obtain that 

RH (G)  is a principal ideal ring (see [6], chap. 3). Thus, R ,  (G)  is an Ore ring 

and from c) follows now that R (G)  is also an Ore ring. 

LEMMA 2. Let F be a free group, N <~ F and G = F I N  be a solvable group. If  

H _C F2 (N) is a normal subgroup of F such that the group ring R (1~) of the group 

]~ = N / H  is an Ore ring, then the group ring R (F) of the group P = F / N  is an Ore 

ring too. 

PRoof. Let F = F"D F'D_ .-.Ft=~D_ ... be the derived series of F and n be 

the first number such that U"~_C N. We shall prove the lemma by induction 

o n  n .  

If n = 0 the statement is trivial. So, we can suppose that n/> 1 and the lemma 

is proved for such pairs F and N, that F t~G N,s ~< n - 1. 

We have now for the group F 2 ( F ) N  

(5) F2(F)N ~> N D_ F2(N) _D H,  

where 

H <3F2(N) and (F2(F)Nff-'~_C N. 

It follows now from the supposition of induction that R(F2(F)N)  is an Ore 

ring. Lemma l(a) shows that R(F2(F)) is an Ore ring too. We also have 

(5') r2(F)l> F2(F) f3 N D F2(N) D H.  

Hence, F/F~(F) is a free abelian group. 

If now the subgroup /(C_ P is generated by finite number of elements 

g. ,g2," ' ,gk,  we have that R c _ K * = { F 2 ( F ) , g , , g 2 , . . . , g k } .  The factorgroup 

K*/F~(F) is a free abelian group of some finite rank r and hence K* can be 

obtained from F~(F) by r consecutive extensions by infinite cyclic groups. We 

have now from Lemma 1 that R (K*) and R ( / ( )  are Ore rings. 

As R is an arbitrary finitely generated subgroup of F, we obtain too that R (F) 

is an Ore ring. The lemma is proved. 

We now need the next lemma about the groups of the class A .  



292 A. 1. LICHTMAN Israel J. Math. 

LEMMA 3. The class of groups A is closed under a) subgroups b) homomorphic 

images c) direct products. 

The proof is evident. 

COROLLARY. Let G be any group, Hi, i = t, 2,-.-, k normal subgroups of G 

such that the factorgroups G, = G/H~ are groups of the class A. Then the group 

= G / H ,  where H = f') ~IH~ is a group of the class A also. 

PROPOSITION 1. Let F be a free group, N <~ F, and G = F / N  be a group of the 

class A . If H C_ F2 (N) is a normal subgroup of F such that the group ring R (I~) of 

the group ff¢ = N / H  is an Ore ring, then the group ring R (F) of the group P = F / H  

is an Ore ring also. 

PROOF. We will prove the proposition by induction on the length of the series 

(1). Thus, we shall suppose that there exists in the group G = F / N  a series with 

length a and the statement is proved for pairs F and N such that the length of 

the series (1) for the group F / N  is less than a .  

Let us consider the arbitrary subgroup / (  C_ F, which is generated by a finite 

number k of elements f1, f2 , . . . , f k ;  let f, be some representative of class 

f,, i = 1,2, . . . ,  k and S = gp{N,f~,f2, . . . , fk}.  We see that S t> N D H and g = 

S / H  D_ K,. 

As in the proof of Lemma 2 it is enough to prove that R (S) is an Ore ring. 

The factorgroup T = S / N  is a subgroup of G and thus there exists in T a 

series of type (1) with length /3 -<_ a ; as T is finitely generated we can suppose 

that / 3 -  1 exists. So, 

(6) T = H~ E> H o - , ,  

where the factorgroup Q = n t 3 / H o _ l  = T/Ho_~ is either a finitely generated 

solvable group or a finite group. 

Let S~ be the inverse image of Ho l according to the natural homomorphism 

, : S m  S / N  = T. Hence, 

(7) S t> Sit> NI> H,  

and 
S / S , =  Q, S , /N~-  H~_,. 

There exists in the group T = S1/N an A-series with length N f l -  1 < a .  

Hence, the ring R (S,) of the group S~ = S J H  is an Ore ring. 

We shall consider now two possibilities. 
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1) The factorgroup S/S, ~- 0 is a solvable group. 

In this case we obtain immediately from lemma 2 that R (S) is an Ore ring. 

2) The group Q is finite. 
Let the order of Q be n, p be a prime dividing n, Qp be a Sylow p-subgroup 

of Q and Sp be the inverse image of Qp according to the natural homomorphism 

~b: S -~ S/S~ ~- Q. Hence, 

(8) S D S. ¢> S,c> NI> H,  

and Sp/S, ~- Qp ; i.e. Sp/S, is a solvable group. As in the case 1) we now have that 

R (Sp) is an Ore ring. 

Let us consider now the ring D = R~, (S) of quotients of R (S) over R ($1). We 

shall prove that D is a division ring and thus, according to Lemma lc), R (S) is 

an Ore ring. 

Let D, be the whole division ring of quotients of R (S,), D~. = R~, (Sp) be the 

ring of quotients of R(Sp) over R(S~). Since R(Sp) is an Ore ring then from 

Lemma lc) it follows that Dp is an Ore ring too. 

It is easy to see now that the left dimension d imt (D:  D , ) =  n and 

dim, (Dp: D~) = pk, where p~ is the highest degree of p that divides n. (pk is the 

order of the Sylow p-subgroup Qp.) Thus, D~ is an Ore ring which is finite 

dimensional over a division ring D~. It is well-known that a ring without zero 

divisors, which is finite dimensional over a division ring, is itself a division ring. 

Let M be any left nonzero ideal of D.  Then 

(9) dim, (M:D,)  = dim, (M:Dp).  dim, (Dp: D,) =- 0 (mod p r ) .  

As p is any prime divisor of n, we may obtain from (9) immediately 

(lO) dim, (M: D,) ~- 0 (mod n) ,  

and hence, as M ~  0, 

dimt (M:D1) = n, i.e. M = D.  

We have obtained that D has no nontrivial left ideals. Thus D is a division 

ring. So, as mentioned above, R (S) is the Ore ring and the proposition is 

proved. 

THEOREM 1. Let F be a free group, N < F and G = F / N  be a group of the class 

A. If V (N)  ~ N is a fully invariant subgroup of N,  such that the factorgroup 

= N / V ( N )  is nilpotent group without torsion, then R (G) is an Ore ring. 
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PROOF. We shall prove that all conditions of Proposition 1 are satisfied. 

First of all, as V (N) is a fully invariant subgroup of N, we have V (N) <3 F.  

Let us suppose now that V (N) ~ F2 (N) .  In this case we obtain from Levy's 

theorem (see [7], p. 237) that the factorgroup N/F2(/V) is an abelian group of 

some finite exponent n ; this is impossible, however, because /Q is a nilpotent 

group without torsion. So, we obtain that V (N)C_ F: (N) .  

The group ring R (N) of a nilpotent group without torsion is, as is known, an 

Ore ring.* Proposition 1 gives now that R ( N )  is an Ore ring too. 

The theorem is proved. 

LEMMA 4. Let G be any group, H~, i E I, be some system of normal subgroups 

and r) ,~, H~ = E ,  where E is the unity subgroup. Let i <-_ ] if H, D_ ~ and let us 

suppose that I is a directed set under this order : for any two subgroups H~I and H~ 

there exists a subgroup H~, such that H~, D_ I-t~, H~: D_ H~. Then R (O)  is a 

subdirect sum of rings R ((3,), where R (G~) is the group ring of the group 

G, = G/H,.  

PROOF. Let x = E~=1 ,~kg~ be some element of R (G) .  Using the condition 

f') ~lH~ = E ,  we can for any element g~l gj choose a subgroup Hk.~such that 

(11) g~lgj~Hk.jl<=k<-n, l<=j<=n, k ~ j .  

Now let H~ be a subgroup that satisfies the condition H~ C_ i") k.j H~.s. 

It follows from (11) that the images gk of the elements gk, k - - 1 , 2 ,  " ' ,  n, 

under the natural homomorphism G--~ G/H~,= ffr~, are all different. The 

homomorphism G--~ G~, induces an homomorphism R (G)--~ R ( (~ )  and the 

image ~ = E  hkgk of X is nonzero in R ((~,o). We proved that R (G)  is 

approximated by the rings R (t~,) and this is equivalent to the conclusion of the 

lemma. 

THEOREM 2. Let F be a free group, N <3 F and V (N) ~ N be a fully invariant 

subgroup of N. If  G = F / N  is approximated by groups from the class A and 

= N~ V (N)  is approximated by nilpotent groups without torsion, then the group 

ring R (F) of the group P = F~ V (N) has no divisors of zero and is embedded in a 

division ring. 

PROOF. There  exists in F a system X of normal subgroups N~ such that 

I'1 N.~x N, = N and the factorgroups G,~ = F/No are groups of class A .  If the 

The proof follows now from the existence in any finitely generated nilpotent group G without 
torsion of a series G = Hk t> Hk_l "'" t>/-/2 t> Ht t> Ho = 1 where all factors H, +~/H, are infinite cyclic 
groups. 
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system X is not closed under finite intersections we can join to it the finite 

intersections of the subgroups N and obtain a new system X'; it follows from 

Lemma 3 and its consequence that if N~ E .~ then Go = F/N~ is group of a class 

A. We will suppose, therefore, that the system X itself is closed under finite 

intersections. 

Let now Fk(/V) be as above the k th term of the lower central series of 

/V ; F* (/V) is the isolator of Fk (/V): h E F* (/V) if and only if h"th~ E Fk (N), for 

some natural n (h). It is well known that F*(/V) is a fully invariant subgroup of 

The following properties of the subgroups F*(/~), k = 1,2, • •., hold. 

1) The factorgroup/V/F*(/V) is a nilpotent group without torsion of the class 

k. 

This follows from the determination of F~(N). 

2) f"l~=l F*(N)= E, where E is the unity subgroup of /~. 

In fact, let 1 ~ ~ E/V and g E f"lk=l F~(/Q). Hence, there exist for any Fk(/V) 

such hE, that ~n~ E F,~ (/V) and this is a contradiction to the approximability by 

nilpotent groups without torsion. 

If now V~ (N) is the inverse image of F*(N) under the natural homomorphism 

N---~ N / V ( N ) =  1V, we have 

C3 v(N) 
k = l  

(12) 

and 
V~ Vk (N) ~- Vl V(N) / Vk (N)I V(N) ~- /V/F*(/V). 

Thus, V~ Vk (N) is a nilpotent group without torsion and the subgroup Vk (N) 

is fully invariant in N. 

Let us consider now two possibilities for cardinality of the set of generators of 

the group F. 

1) F is a free group of infinite rank. 
There exists one-to-one correspondence of the set of fully invariant subgroups 

of N into the set of fully invariant subgroups of F. We will denote by V~ (F) the 

verbal subgroup of F which is an image of V~ (N) under this correspondence; 

Vk (F) is generated by the same words (in F) as Vk (N) (see [7], p. 238). As F~ is 

a subgroup of F, we obtain also a set Vk (F,) of verbal subgroups of the group F,, 

where F~ E X and k = 1 ,2 , . . . .  

As the system X is closed under finite intersections it is possible to use 

Dunwoody's theorem [5] to obtain: 
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(13) N vk (F,,) = V~ ( N F,~ ) = Vk (N) ,  
F ~ X  F ~ X  

k = 1,2, . . . .  

It follows now immediately from ('12) and (13) 

(14) (~ n Vk(F~)= f'~ V k ( N ) = V ( N ) .  
k ~ l  F ~ E X  k ~ l  

We see that the group P = F / V ( N )  is approximated by groups Fk.a = 

F~ V~ (F,,). The group Fk. ~ is an extension of nilpotent group without torsion 
/ 

L = F~/Vk(F~) by the group F / V k ( F ~ ) / E , / V k ( F , , ) ~ -  F/F~ ~- F/F~ = G,,. 

As the group Go is a group of class A we obtain from Theorem 1 that the 
f 

group ring R (Pk. ~) is an Ore ring. 

We shall prove now that the system VE(F,,), F~ ~ X, k = 1 , 2 , ' ' - ,  satisfies the 

conditions of Lemma 4. 

Really, if we have two subgroups Vk, (F~,) and Vk~(F,,~) then 

v,, n Vk2 (Fo) Vk (F,.,) n 

where k = max(k,,k2). As X is closed under finite intersections, it follows 

immediately: 

where F~3 = F~, n F~2. 

Therefore 

v, (&,) n v, (&,), 

i.e. the conditions of Lemma 4 are fulfilled. 
We obtain now from Lemma 4 that R (F) is approximated by Ore rings 

R (Fk, ~). Therefore R (t e) has no nilpotent elements; as l e is a group without 

torsion we obtain (see [10], [4]) that R (F) has no divisors of zero. However,  as 

known (see [3], [2]), a ring without divisors of zero being a subdirect sum of rings 

embedded in division rings can be embedded in some division ring itself. Hence, 

we proved that R (F)  can be embedded in division ring and this completes the 

consideration of the possibility 1. 

2) F is finitely generated group. 
We shall reduce this case to the first one. Let F1 be a free group of countable 

rank; we have F'~ - F*Fo. If N~ is the normal subgroup of F1 which is generated 

by Fo and N, it is easy to check that F~/N~ ~- F / N  = G. Moreover, if Fo is the 
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normal closure of Fo in FI, then N n Fo = E and N1 is a semidirect product of N 

and fro. Thus, N1 O F = NFo n F = N. 

As F~ is a group of countable rank, there exists as above, in the case 1, a verbal 

subgroup V(F1) such that V(Ft)  and V ( N )  are generated by the same set of 

words. 

We have now: F N V(N1)= V ( F A  N O =  V ( N )  (see [9], chap. 4, 42.41). 

Thus, we obtained that the group F~ V (N) can be embedded isomorphically in 

the group F~/V (N1). It has already been proved that the group ring R (ff~) of the 

group ff~ = Ft/V(Nx) can be embedded in a division ring, and, hence, this is true 

also for the ring R (F).  

The theorem is proved. 

COROLLARY 1. Let F be a free group, N ,~ F and V (N) # N is a fully invariant 

subgroup of N. I[ F / N  is a finitely approximated group and N / V ( N )  is 

approximated by nilpotent groups without torsion then the group ring R (F) has no 

divisors of zero and can be embedded in a division ring. 

COROLLARY 2. Let F be a free group, N <~ F where F / N  is finitely approxi- 

mated, N ...... -,~ be the term of a polycentral series that corresponds to the 

sequence of natural numbers nl, n2, "", nk. Then the group ring R (F) of the group 

P F / N  ...... ..,~ has no divisors of zero and can be embedded in a division ring. 

The proof follows from Theorem 2 and from the fact that the free polynilpo- 

tent group/V~ ..... . ~ = N / N  ...... . .  ,~ is approximated by nilpotent groups with- 

out torsion (see [11]). 
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