ON EMBEDDING OF GROUP RINGS IN DIVISION RINGS

BY

A. I. LICHTMAN

ABSTRACT

Let F be a free group, $N \triangleleft F$ and $V(N)$ be a verbal subgroup of N. For the group ring $R(\bar{F})$, where R is any field and $\bar{F} = F/V(N)$, the zero divisor problem of Kaplansky and the problem of embedding $R(\bar{F})$ in a division ring are investigated. It is proved, in particular, that $R(\bar{F})$ has no zero divisors and can be embedded in a division ring when *F/N* is finitely approximated and $N/V(N)$ is approximated by nilpotent groups without torsion.

Introduction

Let F be a free group, N a normal subgroup, and $V(N) \neq N$ a fully invariant subgroup of N.

Let us suppose that the factorgroup $\overline{N} = N/V(N)$ is a group without torsion. It is known that in this case the factorgroup $\bar{F} = F/V(N)$ is also a group without torsion (see, for example, [1]).

We shall investigate in this paper the group ring $R(\bar{F})$ of a group \bar{F} over any field R and we shall get some sufficient conditions for $R(\bar{F})$ to be embedded in a division ring.

THEOREM 1. If $\overline{N} = N/V(N)$ is a nilpotent group without torsion and $G =$ *F/N has a subnormal series (possibly of transfinite length)*

$$
(1) \tG \cdots \triangleright H_{\alpha} \cdots \triangleright H_2 \triangleright H_1 \triangleright E,
$$

where all factors $H_{\alpha+1}/H_{\alpha}$ are locally finite or locally solvable groups, then the *group ring R (* \bar{F} *) has no divisors of zero and has division ring of quotients.*

We shall say that a group G is a group of class A if as above G has a subnormal series (1) where all factors $H_{\alpha+1}/H_a$ *are locally solvable or locally finite groups; the series* (1) *we shall call an A-series.*

Received June 16, 1975

The next theorem gives a sufficient condition for the embedding of $R(\bar{F})$ in a division ring for a wider class of groups \bar{F} , than that considered in Theorem 1. However, in general, in this case $R(F)$ has no full division ring of quotients, as can be seen from the example of ring $R(F)$, where F is a free group.

THEOREM 2. Let F be a free group and $N \leq F$. If F/N is approximated by *groups from the class A and* $V(N) \neq N$ *is a fully invariant subgroup of N, such that* $\bar{N} = N/V(N)$ *is approximated by nilpotent groups without torsion, then the group ring R (F) of the group* $\bar{F} = F/V(N)$ *has no divisors of zero and can be embedded in a division ring.*

If G is any group, we will denote by $\Gamma_n(G)$ the nth term of the lower central series. Thus, $\Gamma_1(G) = G$, $\Gamma_2(G)$ is the commutator subgroup [G, G] of G, and $\Gamma_n(G) = [\Gamma_{n-1}(G), G]$. By $\Gamma_{n_1, n_2, \dots, n_k}(G)$ we will denote the term of an iterated polycentral lower central series, that corresponds to the sequence of natural numbers n_1, n_2, \dots, n_k .

We can get from Theorem 2 the next consequence (see Corollary 2).

If G/N is a finitely approximated group, then the group ring R (F) of the group $\bar{F} = F/\Gamma_{n_1, n_2, \dots, n_k}(F)$ has no divisors of zero and can be embedded in a division *ring.*

Smirnov has proved the absence of divisors of zero in the case when $V(N)$ is the commutator subgroup of N and G is an RN-group (See [12]). All other results on the zero divisor problem in group ring are contained in [10] and [8].

I am grateful to the reviewer for his helpful remarks.

We shall state now a few lemmas that we will need for the proof of Theorem 1.

First of all, we recall that a ring Q has a (right) ring of quotients if and only if it satisfies an Ore condition: for any two elements $q_1, q_2 \in Q$, where q_2 is regular, there exist elements $r_1, r_2 \in Q$, such that

$$
q_1r_1=q_2r_2.
$$

A ring without divisors of zero and with condition (2) *will be called an Ore ring* ; as is well-known, such a ring has a full division ring of quotients.

The conclusions of the following lemma are well-known.

LEMMA 1. Let G be any group and $R(G)$ its group ring over the field R. *Then*

(a) *If* $R(G)$ is an Ore ring and $G₁$ is a subgroup of G , then $R(G₁)$ is an Ore *ring too.*

(b) If for every finitely generated subgroup $K \subseteq G$ the group ring $R(K)$ is an *Ore ring, then* $R(G)$ *is an Ore ring too.*

(c) Let $G \triangleright H$ and R (H) be an Ore ring. There exists a ring $R_H(G)$ of the *quotients of R (G) over R (H) and R (G) is an Ore ring if and only if* R_H *(G) is an Ore ring.*

(d) Let $G \triangleright H$ and $R(H)$ be an Ore ring. If G/H is an infinite cyclic group *then* $R(G)$ *is an Ore ring too.*

PROOF.

(a) Any element $z \in R(G)$ can be written uniquely in the form $z =$ $\Sigma_{i=1}^n \lambda_i g_i$, where $\lambda_i \in R(G_1), i=1,2,\dots, n$ and $g_1=1, g_2\cdots g_n$ are some representatives of right cosets of G over $G₁$.

Let α and β be any elements from $R(G_1)$. There exist $x = \sum_{i} \alpha_i g_i$ and $y = \sum \beta_i g_i$ in $R(G)$ such that

$$
\alpha x = \beta y \, .
$$

The equation (3) gives us immediately:

$$
\alpha \alpha_1 = \beta \beta_1,
$$

which means that the condition (2) holds in $R(G₁)$. The absence of divisors of zero in $R(G_1)$ follows immediately. Hence, $R(G_1)$ is an Ore ring.

(b) Follows immediately from condition (2).

(c) Let D be the full ring of (right) quotients of $R(H)$. Thus D is a division subring of $R_H(G)$ and for any element $\lambda \in D$ we have $\lambda = \alpha \beta^{-1}, \alpha, \beta \in R(H)$. The statement now follows easily from the existence of the representations, for every $x \in R_H(G)$,

$$
(4) \hspace{3.1em} x = \sum_{i=1}^n \lambda_i g_i
$$

and

$$
(4') \hspace{1cm} x = \sum_{i=1}^n g_i \lambda'_i,
$$

where $g_1 = 1, g_2 \cdots, g_n$ are some representatives of cosets G over H and $\lambda_i, \lambda_i \in D, i = 1, 2, \dots, n$.

d) Let gH be the generator of the factorgroup G/H . Then from (4) we get that there exists a unique representation for every $x \in R_H(G)$

$$
(4'')\qquad \qquad x=\sum_{i=-k}^n\lambda_i g^i.
$$

It is easy to see now that $R_H(G)$ has no divisors of zero; moreover, an algorithm of division can be determined in $R_H(G)$ as in the case of the ring of noncommutative polynomials $Q(t, S)$ and, as in the latter case, we obtain that $R_H(G)$ is a principal ideal ring (see [6], chap. 3). Thus, $R_H(G)$ is an Ore ring and from c) follows now that $R(G)$ is also an Ore ring.

LEMMA 2. Let F be a free group, $N \triangleleft F$ and $G = F/N$ be a solvable group. If $H \subseteq \Gamma_2(N)$ *is a normal subgroup of F such that the group ring R(N) of the group* $\overline{N} = N/H$ is an Ore ring, then the group ring $R(\overline{F})$ of the group $\overline{F} = F/N$ is an Ore *ring too.*

PROOF. Let $F = F^0 \supset F' \supset \cdots F^{(m)} \supset \cdots$ be the derived series of F and n be the first number such that $F^{(n)} \subseteq N$. We shall prove the lemma by induction on n.

If $n = 0$ the statement is trivial. So, we can suppose that $n \ge 1$ and the lemma is proved for such pairs F and N, that $F^{(s)} \subseteq N, s \le n - 1$.

We have now for the group $\Gamma_2(F)N$

$$
\Gamma_2(F) N \triangleright N \supseteq \Gamma_2(N) \supseteq H,
$$

where

$$
H \lhd \Gamma_2(N) \text{ and } (\Gamma_2(F)N)^{(n-1)} \subseteq N.
$$

It follows now from the supposition of induction that $R(\Gamma_2(F)N)$ is an Ore ring. Lemma 1(a) shows that $R(\overline{\Gamma_2(F)})$ is an Ore ring too. We also have

(5') $\Gamma_2(F) \triangleright \Gamma_2(F) \cap N \supseteq \Gamma_2(N) \supseteq H$.

Hence, $\overline{F}/\overline{\Gamma_2(F)}$ is a free abelian group.

If now the subgroup $\bar{K} \subseteq \bar{F}$ is generated by finite number of elements $\overline{g_1}, \overline{g_2}, \dots, \overline{g_k}$, we have that $\overline{K} \subseteq K^* = {\overline{\{\Gamma_2(F), g_1, g_2, \dots, g_k\}}}$. The factorgroup $K^*/\Gamma_2(F)$ is a free abelian group of some finite rank r and hence K^* can be obtained from $\overline{\Gamma_2(F)}$ by r consecutive extensions by infinite cyclic groups. We have now from Lemma 1 that $R(K^*)$ and $R(\bar{K})$ are Ore rings.

As \bar{K} is an arbitrary finitely generated subgroup of \bar{F} , we obtain too that $R(\bar{F})$ is an Ore ring. The lemma is proved.

We now need the next lemma about the groups of the class A.

292 A. I. LICHTMAN Israel J. Math.

LEMMA 3. *The class of groups A is closed under* a) *subgroups* b) *homomorphic images* c) *direct products.*

The proof is evident.

COROLLARY. Let G be any group, H_i , $i = 1, 2, \dots, k$ normal subgroups of G such that the factorgroups $\bar{G}_i = G/H_i$ are groups of the class A. Then the group $\overline{G} = G/H$, where $H = \bigcap_{i \in I} H_i$ is a group of the class A also.

PROPOSITION 1. Let F be a free group, $N \triangleleft F$, and $G = F/N$ be a group of the *class A . If H* \subset Γ ₂(N) *is a normal subgroup of F such that the group ring R (N) of the group* $\bar{N} = N/H$ *is an Ore ring, then the group ring R (F) of the group* $\bar{F} = F/H$ *is an Ore ring also.*

PROOF. We will prove the proposition by induction on the length of the series (1). Thus, we shall suppose that there exists in the group $G = F/N$ a series with length α and the statement is proved for pairs F and N such that the length of the series (1) for the group F/N is less than α .

Let us consider the arbitrary subgroup $\bar{K} \subset \bar{F}$, which is generated by a finite number k of elements $\bar{f}_1, \bar{f}_2, \dots, \bar{f}_k$; let f_i be some representative of class \bar{f}_i , $i = 1, 2, \dots, k$ and $S = gp\{N, f_1, f_2, \dots, f_k\}$. We see that $S \triangleright N \supseteq H$ and $\bar{S} =$ $S/H \supseteq \bar{K}$.

As in the proof of Lemma 2 it is enough to prove that $R(\bar{S})$ is an Ore ring.

The factorgroup $T = S/N$ is a subgroup of G and thus there exists in T a series of type (1) with length $\beta \leq \alpha$; as T is finitely generated we can suppose that β -1 exists. So,

$$
(6) \t\t T = H_{\beta} \triangleright H_{\beta-1},
$$

where the factorgroup $Q = H_{\beta}/H_{\beta-1} = T/H_{\beta-1}$ is either a finitely generated solvable group or a finite group.

Let S_1 be the inverse image of $H_{\beta-1}$ according to the natural homomorphism φ : S \rightarrow S/N = T. Hence,

$$
(7) \tS \rhd S_1 \rhd N \rhd H,
$$

and

$$
S/S_1 \simeq Q, \quad S_1/N \simeq H_{\beta-1}.
$$

There exists in the group $T = S_1/N$ an A-series with length $\leq \beta - 1 < \alpha$. Hence, the ring R (\bar{S}_1) of the group $\bar{S}_1 = S_1/H$ is an Ore ring.

We shall consider now two possibilities.

1) The factorgroup $S/S_1 \simeq Q$ is a solvable group.

In this case we obtain immediately from lemma 2 that $R(\bar{S})$ is an Ore ring.

2) The group Q is finite.

Let the order of Q be n, p be a prime dividing n, Q_p be a Sylow p-subgroup of Q and S_p be the inverse image of Q_p according to the natural homomorphism ψ : $S \triangleq S/S_i \simeq Q$. Hence,

$$
(8) \tS \supseteq S_p \rhd S_1 \rhd N \rhd H,
$$

and $S_p/S_1 \simeq Q_p$; i.e. S_p/S_1 is a solvable group. As in the case 1) we now have that $R(\bar{S}_p)$ is an Ore ring.

Let us consider now the ring $D = R_{\bar{s}_1}(\bar{S})$ of quotients of $R(\bar{S})$ over $R(\bar{S}_1)$. We shall prove that D is a division ring and thus, according to Lemma 1c), $R(\bar{S})$ is an Ore ring.

Let D_1 be the whole division ring of quotients of $R(\bar{S}_1)$, $D_r = R_{\bar{S}_1}(\bar{S}_p)$ be the ring of quotients of $R(\bar{S}_P)$ over $R(\bar{S}_1)$. Since $R(S_P)$ is an Ore ring then from Lemma 1c) it follows that D_P is an Ore ring too.

It is easy to see now that the left dimension $\dim_l(D: D_1) = n$ and $\dim_{l} (D_p : D_1) = p^k$, where p^k is the highest degree of p that divides n. (p^k is the order of the Sylow p-subgroup Q_p .) Thus, D_p is an Ore ring which is finite dimensional over a division ring D_1 . It is well-known that a ring without zero divisors, which is finite dimensional over a division ring, is itself a division ring.

Let M be any left nonzero ideal of D . Then

(9)
$$
\dim_l (M:D_1) = \dim_l (M:D_p) \cdot \dim_l (D_p:D_1) \equiv 0 \pmod{p^K}
$$
.

As p is any prime divisor of n , we may obtain from (9) immediately

(10) $\dim_l (M: D_1) \equiv 0 \pmod{n},$

and hence, as $M \neq 0$,

$$
\dim_{\mathfrak{l}} (M:D_1) = n, \text{ i.e. } M = D.
$$

We have obtained that D has no nontrivial left ideals. Thus D is a division ring. So, as mentioned above, $R(\bar{S})$ is the Ore ring and the proposition is proved.

THEOREM 1. Let F be a free group, $N \triangleleft F$ and $G = F/N$ be a group of the class A. If $V(N) \neq N$ is a fully invariant subgroup of N, such that the factorgroup $\overline{N} = N/V(N)$ is nilpotent group without torsion, then R (\overline{G}) is an Ore ring.

PROOF. We shall prove that all conditions of Proposition 1 are satisfied. First of all, as $V(N)$ is a fully invariant subgroup of N, we have $V(N) \triangleleft F$.

Let us suppose now that $V(N) \not\subseteq \Gamma_2(N)$. In this case we obtain from Levy's theorem (see [7], p. 237) that the factorgroup $\overline{N}/\Gamma_2(\overline{N})$ is an abelian group of some finite exponent n; this is impossible, however, because \overrightarrow{N} is a nilpotent group without torsion. So, we obtain that $V(N) \subset \Gamma_2(N)$.

The group ring R (\bar{N}) of a nilpotent group without torsion is, as is known, an Ore ring.* Proposition 1 gives now that *R(N)* is an Ore ring too.

The theorem is proved.

LEMMA 4. Let G be any group, H_i , $i \in I$, be some system of normal subgroups *and* $\bigcap_{i \in I} H_i = E$, *where E is the unity subgroup. Let i* $\leq j$ *if H_i* $\supseteq H_j$ *and let us suppose that I is a directed set under this order: for any two subgroups* H_i *and* H_i *, there exists a subgroup H_{is}, such that* $H_{i_1} \supseteq H_{i_2}$, $H_{i_3} \supseteq H_{i_3}$. Then R (G) is a subdirect sum of rings $R(\bar{G}_i)$, where $R(\bar{G}_i)$ is the group ring of the group $\bar{G}_i = G/H_i$.

PROOF. Let $x = \sum_{k=1}^{n} \lambda_k g_k$ be some element of R (G). Using the condition $\bigcap_{i \in I} H_i = E$, we can for any element $g_{k}^{-1} g_{i}$ choose a subgroup $H_{k,i}$ such that

$$
(11) \t g_k^{-1} g_j \notin H_{k,j} 1 \leq k \leq n, 1 \leq j \leq n, k \neq j.
$$

Now let H_{i_0} be a subgroup that satisfies the condition $H_{i_0} \subseteq \bigcap_{k,i} H_{k,i}$.

It follows from (11) that the images \bar{g}_k of the elements g_k , $k=1,2,\dots,n$, under the natural homomorphism $G - G/H_{i_0} = \bar{G}_{i_0}$ are all different. The homomorphism $G \to G_{i_0}$ induces an homomorphism $R(G) \to R(\bar{G}_{i_0})$ and the image $\bar{x} = \sum \lambda_k \bar{g}_k$ of x is nonzero in $R(\bar{G}_{i_0})$. We proved that $R(G)$ is approximated by the rings R (\bar{G}_i) and this is equivalent to the conclusion of the lemma.

THEOREM 2. Let F be a free group, $N \triangleleft F$ and $V(N) \neq N$ be a fully invariant subgroup of N. If $G = F/N$ is approximated by groups from the class A and $\overline{N} = N/V(N)$ is approximated by nilpotent groups without torsion, then the group *ring R (* \bar{F} *) of the group* $\bar{F} = F/V(N)$ has no divisors of zero and is embedded in a *division ring.*

PROOF. There exists in F a system X of normal subgroups N_a such that $\bigcap_{N_\alpha \in X} N_\alpha = N$ and the factorgroups $G_\alpha = F/N_\alpha$ are groups of class A. If the

 \overline{T} The proof follows now from the existence in any finitely generated nilpotent group G without torsion of a series $G = H_k \triangleright H_{k-1} \cdots \triangleright H_2 \triangleright H_1 \triangleright H_0 = 1$ where all factors H_{i+1}/H_i are infinite cyclic groups.

system X is not closed under finite intersections we can join to it the finite intersections of the subgroups N and obtain a new system \bar{X} ; it follows from Lemma 3 and its consequence that if $N_a \in \overline{X}$ then $G_a = F/N_a$ is group of a class A. We will suppose, therefore, that the system X itself is closed under finite intersections.

Let now $\Gamma_k(\bar{N})$ be as above the kth term of the lower central series of \overline{N} ; $\Gamma_k^* (\overline{N})$ is the isolator of $\Gamma_k (\overline{N})$: $h \in \Gamma_k^* (\overline{N})$ if and only if $h^{n(h)} \in \Gamma_k (\overline{N})$, for some natural n (h). It is well known that $\Gamma_k^*(\bar{N})$ is a fully invariant subgroup of \bar{N} .

The following properties of the subgroups $\Gamma_k^*(\bar{N}), k = 1, 2, \dots$, hold.

1) The factorgroup $\bar{N}/\Gamma^*_{k}(\bar{N})$ is a nilpotent group without torsion of the class k.

This follows from the determination of $\Gamma_k^*(\bar{N})$.

2) $\bigcap_{k=1}^{\infty} \Gamma_k^*(\bar{N}) = E$, where E is the unity subgroup of \bar{N} .

In fact, let $1 \neq \overline{g} \in \overline{N}$ and $g \in \bigcap_{k=1} \Gamma_k^*(\overline{N})$. Hence, there exist for any $\Gamma_k(\overline{N})$ such n_k , that $\bar{g}^{n_k} \in \Gamma_{n_k}(\bar{N})$ and this is a contradiction to the approximability by nilpotent groups without torsion.

If now $V_k(N)$ is the inverse image of $\Gamma_k^*(\bar{N})$ under the natural homomorphism $N \rightarrow N/V(N) = \overline{N}$, we have

(12)
$$
\bigcup_{k=1}^{\infty} V_k(N) = V(N)
$$

and

$$
V/V_{k}(N) \cong V/V(N)\bigg/ V_{k}(N)/V(N) \simeq \tilde{N}/\Gamma_{k}^{*}(\tilde{N}).
$$

Thus, $V/V_k(N)$ is a nilpotent group without torsion and the subgroup $V_k(N)$ is fully invariant in N .

Let us consider now two possibilities for cardinality of the set of generators of the group F .

1) *F is a free group of infinite rank.*

There exists one-to-one correspondence of the set of fully invariant subgroups of N into the set of fully invariant subgroups of F. We will denote by $V_k(F)$ the verbal subgroup of F which is an image of $V_k(N)$ under this correspondence; V_k (F) is generated by the same words (in F) as $V_k(N)$ (see [7], p. 238). As F_{α} is a subgroup of F, we obtain also a set V_k (F_{α}) of verbal subgroups of the group F_{α} , where $F_{\alpha} \in X$ and $k = 1, 2, \dots$.

As the system X is closed under finite intersections it is possible to use Dunwoody's theorem [5] to obtain:

(13)
$$
\bigcap_{F_{\alpha}\in X} V_{k}(F_{\alpha})=V_{k}(\bigcap_{F_{\alpha}\in X} F_{\alpha})=V_{k}(N),
$$

 $k = 1, 2, \dots$.

It follows now immediately from (12) and (13)

(14)
$$
\bigcap_{k=1}^{\infty} \bigcap_{F_{\alpha} \in X} V_k(F_{\alpha}) = \bigcap_{k=1}^{\infty} V_k(N) = V(N).
$$

We see that the group $\bar{F} = F/V(N)$ is approximated by groups $\bar{F}_{k,\alpha} =$ $F/V_k(F_a)$. The group $\bar{F}_{k,a}$ is an extension of nilpotent group without torsion $\overline{F}_a = F_a/V_k(F_a)$ by the group $F/V_k(F_a) / F_a/V_k(F_a) \approx F/F_a \approx F/F_a = G_a$.

As the group G_{α} is a group of class \overrightarrow{A} we obtain from Theorem 1 that the group ring $R(\bar{F}_{k,\alpha})$ is an Ore ring.

We shall prove now that the system $V_k(F_\alpha)$, $F_\alpha \in X$, $k = 1, 2, \dots$, satisfies the conditions of Lemma 4.

Really, if we have two subgroups $V_{k_1}(F_{\alpha_1})$ and $V_{k_2}(F_{\alpha_2})$ then

$$
V_{k_1}(F_{\alpha}) \cap V_{k_2}(F_{\alpha}) \supseteq V_{k}(F_{\alpha_1}) \cap V_{k}(F_{\alpha_2}),
$$

where $k = max(k_1, k_2)$. As X is closed under finite intersections, it follows immediately:

$$
V_{k}(F_{\alpha_{1}})\cap V_{k}(F_{\alpha_{2}})\supseteq V_{k}(F_{\alpha_{3}}),
$$

where $F_{\alpha_3} = F_{\alpha_1} \cap F_{\alpha_2}$.

Therefore

$$
V_{k_1}(F_{\alpha_1}) \cap V_{k_2}(F_{\alpha_2}) \supseteq V_k(F_{\alpha_3}),
$$

i.e. the conditions of Lemma 4 are fulfilled.

We obtain now from Lemma 4 that $R(\bar{F})$ is approximated by Ore rings $R(\bar{F}_{k,a})$. Therefore $R(\bar{F})$ has no nilpotent elements; as \bar{F} is a group without torsion we obtain (see [10], [4]) that $R(\bar{F})$ has no divisors of zero. However, as known (see [3], [2]), a ring without divisors of zero being a subdirect sum of rings embedded in division rings can be embedded in some division ring itself. Hence, we proved that $R(\bar{F})$ can be embedded in division ring and this completes the consideration of the possibility 1.

2) *F is finitely generated group.*

We shall reduce this case to the first one. Let F_1 be a free group of countable rank; we have $F_1 \simeq F * F_0$. If N_1 is the normal subgroup of F_1 which is generated by F_0 and N, it is easy to check that $F_1/N_1 \simeq F/N \cong G$. Moreover, if \bar{F}_0 is the normal closure of F_0 in F_1 , then $N \cap \overline{F}_0 = E$ and N_1 is a semidirect product of N and \bar{F}_0 . Thus, $N_1 \cap F = N\bar{F}_0 \cap F = N$.

As F_1 is a group of countable rank, there exists as above, in the case 1, a verbal subgroup $V(F_1)$ such that $V(F_1)$ and $V(N)$ are generated by the same set of words.

We have now: $F \cap V(N_1) = V(F \cap N_1) = V(N)$ (see [9], chap. 4, 42.41). Thus, we obtained that the group $F / V(N)$ can be embedded isomorphically in the group $F_1/V(N_1)$. It has already been proved that the group ring $R(\bar{F}_1)$ of the group $\bar{F}_1 = F_1/V(N_1)$ can be embedded in a division ring, and, hence, this is true also for the ring $R(\bar{F})$.

The theorem is proved.

COROLLARY 1. Let F be a free group, $N \triangleleft F$ and $V(N) \neq N$ is a fully invariant subgroup of N. If F/N is a finitely approximated group and $N/V(N)$ is *approximated by nilpotent groups without torsion then the group ring R (F) has no divisors of zero and can be embedded in a division ring.*

COROLLARY 2. Let F be a free group, $N \triangleleft F$ where F/N is finitely approxi*mated,* N_{n_1, n_2, \dots, n_k} be the term of a polycentral series that corresponds to the *sequence of natural numbers* n_1, n_2, \dots, n_k . Then the group ring R (\bar{F}) of the group $\tilde{F} = F/N_{n_1, n_2, \dots, n_k}$ has no divisors of zero and can be embedded in a division ring.

The proof follows from Theorem 2 and from the fact that the free polynilpotent group $\bar{N}_{n_1, n_2, \dots, n_k} = N/N_{n_1, n_2, \dots, n_k}$ is approximated by nilpotent groups without torsion (see [11]).

REFERENCES

1. G. Baumslag, *Wreath products and extensions,* Math. Z. 81 (1963), 286-299.

2. I. E. Burmistrovitch, *On embedding of rings in division rings,* Siberian Math. J. 4 (1963), 1235-1240.

3. P. M. Cohn, *Universal Algebra,* Harper and Row, New York, 1965.

4. I. G. Connell, *On the group ring,* Canad. J. Math. 15 (1963), 650-685.

5. M. J. Dunwoody, *On verbal subgroups of free groups,* Arch. Math. 16 (1965), 153-157.

6. N. Jacobson, *The Theory of Rings,* American Mathematical Society, New York, 1943.

7. A. G. Kurosh, *The Theory of Groups,* Moscow, 1967 (in Russian).

8. A. V. Mihalev and A.E. Zalesskii, *Group Rings,* VINITI, Moscow, 1943 (in Russian).

9. H. Neumann, *Varieties of Groups,* Springer-Verlag, Berlin, 1967.

10. D.S. Passman, *Advances in group rings,* Israel J. Math. 19 (1974), 67-103.

11. A. L. Sbmelkin, *Free polynilpotent groups,* Izv. Akad. Nauk. SSSR Ser. Mat. 28 (1964), 91-122.

12. D. M. Smirnov, *On solvable groups and their group rings,* Mat. Sb. 67 (1965), 366-383.

DEPARTMENT OF MATHEMATICS

BEN GURION UNIVERSITY OF THE NEGEV BEERSHEBA, ISRAEL